Прогнозы технических открытий

01.01.2017

Прогнозы технических открытий

Учёных ВШЭ, представляющих разные области знаний, поделились своими прогнозами о том, какие направления исследований будут особенно перспективны в 2017 году, где можно ожидать открытий и прорывов и как все это изменит нашу жизнь.



Машинное обучение и искусственный интеллект

Искусственный интеллект, без сомнений, будет разработан уже через 5–10 лет. А в наступающем году ожидается существенный прогресс в решении трёх задач, которые помогут приблизиться к этому.

Говорит Дмитрий Ветров, профессор-исследователь Департамента больших данных и информационного поиска факультета компьютерных наук ВШЭ:

"Прогнозами заниматься дело неблагодарное, тем более что прогресс в области современных методов машинного обучения обгоняет самые смелые ожидания в последние годы. Но некоторые направления в области обучения глубинных нейронных сетей, в которых можно ждать существенных продвижений в ближайшее время, я рискну назвать.

Во-первых, это развитие идей нейросетевого обучения с подкреплением, которое позволит разработать новые самообучающиеся алгоритмы для агентов, взаимодействующих с окружающей средой. Это могут быть как роботы, так и программы, действующие в виртуальном пространстве, например, играющие в интеллектуальные игры типа Го (уже сделано) или Starcraft (в процессе). Главной целью тут, конечно, станет создание алгоритма, умеющего «на ходу» приспосабливаться к новой сложной игре или окружению.

Во-вторых, это разработка новых методов обучения «на лету» и мета-обучения. Первое позволяет компьютеру схватывать новые понятия и смыслы по нескольким примерам, подобно тому, как это делает человек, и в отличие от современных нейронных сетей, которые выучивают новое понятие после демонстрации тысяч и десятков тысяч примеров.

Второе позволяет нейронной сети самой подбирать параметры своего метода обучения. Сейчас качество и скорость обучения нейронных сетей существенно зависит от выставления ряда параметров (обычно называемых гипер-параметрами, чтобы отличать их от весов сети, которые, собственно, и настраиваются в ходе обучения), а также от архитектуры самой сети. Сейчас они определяются человеком или полуавтоматичексим процедурами, далекими от оптимальных. Из-за этого нейросети учатся дольше и хуже, чем могли бы.

Появившиеся в 2016 году работы показывают, что эту работу в принципе можно передоверить вспомогательной нейронной сети. Как все мы помним со средней школы, признаком завершения промышленной революции является момент, когда «машины начинают производить машины». Возможно, в будущем такой же важной вехой станет момент, когда нейросети начнут обучать нейросети и есть основания полагать, что это случится уже в 2017 году.

В-третьих, нейронные сети научатся говорить с человеком (как в смысле генерации текстов реплик, так и в смысле синтеза речи, неотличимой от человеческой), генерировать фотореалистичные картинки и видеоряды по текстовому описанию, писать большие осмысленные тексты. Это станет нашим ближайшим будущим благодаря стремительному прогрессу в области т.н. генеративных моделей глубинного обучения. Конечно, это приведет к созданию новых бизнесов, появлению новых видов товаров и услуг, а также к росту производительности труда в традиционных отраслях экономики, типа мобильных операторов или банков, которым можно будет отказаться от дорогостоящих и неэффективных колл-центров.

Решение всех этих задач станет важным шагом на пути к Святому Граалю машинного обучения — созданию искусственного интеллекта. В следующем году ИИ, конечно, не появится, но через 5–10 лет он, несомненно, будет разработан. Тем более что уже имеющиеся элементы искусственного интеллекта будут помогать ученым в создании полноценного ИИ и, тем самым, позволят ускорить работу в этом направлении. Создание ИИ станет важнейшим достижением человечества и обеспечит ему мощный цивилизационный рывок вперед".



Урбанистика

Управление городами будет строиться на основе больших данных, а не на командно-административной логике, и одного только строительства жилья будет недостаточно, чтобы люди чувствовали себя комфортно. В столичных и других крупных городах эти процессы уже начались, на очереди — остальные.

Говорит Виталий Стадников, заместитель декана Высшей школы урбанистики имени А.А. Высоковского:


"Я думаю, что 2017 год станет годом перехода от количественной ориентации к качественной в части развития пространства российских городов. Сейчас мы можем говорить о расцвете этой области урбанистики, а совсем недавно понимание развития города сводилось к экстенсивному расширению и строительству жилья.

Сегодня стало понятно, что строительства жилья не достаточно для того, чтобы люди чувствовали себя удовлетворёнными средой и образом жизни в городе. Социальное самочувствие находится в серьёзной зависимости от того, что люди видят за пределами своей квартиры. Поэтому и в следующем году необходимо заниматься различными проектами благоустройства городской среды (дальнейшее развитие общественного транспорта, организация общественных пространств и пр.). Эти процессы стартовали в столицах и их нужно запускать во всех прочих крупных городах.

В следующем году актуальной будет тема больших данных в связи с городским развитием. Благодаря широкому и быстрому развитию мобильных технологий, в частности, свойственных сервисной экономике, благодаря телефонам, компьютерам, социальным сетям развивается знание о людях, городских жителях. Этот метод гораздо эффективнее, быстрее и глубже, в отличие от прежних методов, например, анализа данных переписи населения. До сих пор планы городов традиционно разрабатывались исходя из командно-административной логики и понимания пространства и будущего города с административной точки зрения. По сути, российские города не обладали знанием о тех людях, которые в них живут. А оно сегодня становится серьезным инструментом понимания характеров горожан, особенностей их поведения. И наличие этого знания должно повлиять на структуру городов, на развитие нормативной части — то есть разработку документов территориального развития, на правила зонирования при градостроительной деятельности.

Тема с большими данными пока не сильно развита в российских городах, но судя по тому, что уже сегодня стиль управления меняется, становится адаптивным, подстраивается под условия в городе, быстро реагирует на изменения, технологии больших данных в ближайшем будущем серьезно повлияют на административные практики в городе. Во всяком случае, в столичных и наиболее продвинутых региональных городах это уже так, значит, это направление будет развиваться и в других местах. «Смартизация» управления городами находится сейчас на гребне волны, и я думаю, что это тенденция будет только укрепляться в повседневных практиках".





Источник Просмотров: 829


Интересно? Поделись!

Теги: техника, наука
Категория: Новости мира техники
uCoz